Viscosity solutions to the infinity Laplacian equation with lower terms

نویسندگان

چکیده

We establish the existence and uniqueness of viscosity solutions tothe Dirichlet problem $$\displaylines{ \Delta_\infty^h u=f(x,u), \quad \hbox{in } \Omega,\cr u=q, \quad\hbox{on }\partial\Omega,}$$ where \(q\in C(\partial\Omega)\), \(h>1\), \(\Delta_\infty^h u=|Du|^{h-3}\Delta_\infty u\). The operator \(\Delta_\infty u=\langle D^2uDu,Du \rangle\) is infinity Laplacian which strongly degenerate, quasilinear it associated with absolutely minimizing Lipschitz extension. When nonhomogeneous term \(f(x,t)\) non-decreasing in \(t\), we prove solution via Perron's method. also a result based on perturbation analysis solutions. If function nonpositive (nonnegative) non-increasing give by an iteration technique under condition that domain has small diameter. Furthermore, investigate to boundary-value singularity u=-b(x)g(u), \Omega, \cr u>0, u=0, \hbox{on }\partial\Omega, }$$ when satisfies some regular condition. analyze asymptotic estimates for near boundary.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Various Properties of Solutions of the Infinity–laplacian Equation

We collect a number of technical assertions and related counterexamples about viscosity solutions of the infinity Laplacian PDE −∆∞u = 0 for ∆∞u := ∑n i,j=1 uxiuxj uxixj .

متن کامل

The Infinity Laplacian, Aronsson’s Equation and Their Generalizations

The infinity Laplace equation ∆∞u = 0 arose originally as a sort of Euler–Lagrange equation governing the absolute minimizer for the L∞ variational problem of minimizing the functional ess-supU |Du|. The more general functional ess-supUF (x, u, Du) leads similarly to the so-called Aronsson equation AF [u] = 0. In this paper we show that these PDE operators and various interesting generalization...

متن کامل

Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity

Some multiplicity results are presented for the eigenvalue problem { −div(|x|−2a∇u)= λ|x|−2bf (u)+μ|x|−2cg(u) in Ω, u= 0 on ∂Ω, (Pλ,μ) where Ω ⊂Rn (n 3) is an open bounded domain with smooth boundary, 0 ∈Ω , 0 < a < n−2 2 , a b, c < a + 1, and f :R→R is sublinear at infinity and superlinear at the origin. Various cases are treated depending on the behaviour of the nonlinear term g. © 2008 Elsev...

متن کامل

A Hölder infinity Laplacian

In this paper we study the limit as p →∞ of minimizers of the fractional W -norms. In particular, we prove that the limit satisfies a non-local and non-linear equation. We also prove the existence and uniqueness of solutions of the equation. Furthermore, we prove the existence of solutions in general for the corresponding inhomogeneous equation. By making strong use of the barriers in this cons...

متن کامل

Analytic solutions for the Burgers equation with source terms

Analytic solutions for Burgers equations with source terms, possibly stiff, represent an important element to assess numerical schemes. Here we present a procedure, based on the characteristic technique to obtain analytic solutions for these equations with smooth initial conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Differential Equations

سال: 2023

ISSN: ['1072-6691']

DOI: https://doi.org/10.58997/ejde.2023.42